### Gunter, Jason

From:

Nations, Mark [mnations@doerun.com]

Sent:

Friday, April 12, 2013 12:12 PM

To:

Gunter, Jason

Cc:

England, Jason; Yingling, Mark; Wohl, Matthew; 'Kevin Lombardozzi' (kevinl@VALHI.NET);

'John E. Kennedy' (jkennedy@i1.net); Norman Lucas (cityhall@i1.net);

robert.hinkson@dnr.mo.gov; Ty Morris (TMorris@barr.com)

Subject:

National Mine Tailings Site Progress Report

Attachments:

National.pdf; Teklab Lab Report 13030305 REV1 03-06-13.pdf

#### Jason:

Attached is the National Tailings Site progress report for the month of March 2013.

In an effort to reduce the amount of paper generated I am requesting to eliminate the hard copies. If anyone prefers or requires a hard copy in addition to the electronic, please let me know.

Thanks Mark

This message is intended solely for the designated recipient and may contain confidential, privileged or proprietary information. If you have received it in error, please notify the sender immediately and delete the original and any copy or printout. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of The Doe Run Company. Finally, the recipient should check this message and any attachments for the presence of viruses or malware. The Doe Run Company accepts no liability for any loss or damage caused through the transmission of this e-mail.

07CQ 30290264 4,2

Superfund

OUDZ



Remediation Group

Mark Nations
Mining Properties Manager
mnations@doerun.com

April 12, 2013

Mr. Jason Gunter Remedial Project Manager U.S. Environmental Protection Agency Region 7 - Superfund Branch 11201 Renner Blvd. Lenexa, KS 66219

Re: National Mine Tailings Site Progress Report

Dear Mr. Gunter:

As required by Article VI, Section 51 of the Unilateral Administrative Order (Docket No.CERCLA-07-2006-0231) for the referenced project and on behalf of The Doe Run Company and NL Industries, Inc., the progress report for the period March 1, 2013 through March 31, 2013 is enclosed. If you have any questions or comments, please call me 573-518-0800.

Sincerely,

**Mark Nations** 

**Mining Properties Manager** 

**Enclosure** 

c: Jason England - TDRC

Mark Yingling - TDRC (electronic only)

Matt Wohl - TDRC (electronic only)

Kevin Lombardozzi - NL Industries, Inc.

John Kennedy - City of Park Hills

Norm Lucas - Park Hills - Leadington Chamber of Commerce

Robert Hinkson - MDNR

Ty Morris - Barr Engineering

## **National Mine Tailings Site**

Park Hills, Missouri

### Removal Action - Monthly Progress Report

Period: March 1, 2013 - March 31, 2013

### 1. Actions Performed and Problems Encountered This Period:

a. Work continued on the development of the Removal Action Report.

### 2. Analytical Data and Results Received This Period:

- a. During this period, water samples were collected at the sampling locations identified in Appendix C of the Removal Action Work Plan where water was present. Copies of the analytical results from the last sampling event are included with this progress report.
- b. During this period, the Ambient Air Monitoring Reports for December 2012 and Fourth Quarter 2012 were completed. Any issues identified in these reports are discussed below. A copy of these documents has been sent to your attention.

The December 2012 Ambient Air Monitoring Report noted the following:

- The action levels for lead and dust were not exceeded.
- The sample for National #1 (Ozark Insulation) TSP monitor on 12/06/12 was qualified because the reweigh value was outside laboratory tolerances. The lead concentration was not affected by this issue.
- The sample for National #2 (Soccer Field) TSP monitor on 12/20/12 was invalid since the elapsed time for the sample exceeded tolerances. Upon identifying the issue, timer and sampling procedures were evaluated and the issue was corrected.
- The sample for National #3 (Water Plant) TSP monitor on 12/20/12 was invalid due to a
  mechanical failure. Upon discovering the mechanical failure, the issue was addressed.
- No samples were taken with the TSP monitors on 12/24/12 and 12/25/12 due to the holiday.
- No samples were taken with the PM<sub>10</sub> monitors on 12/26/12 due to the holiday.
- A QA filter blank was completed on the Big River #4 (Primary) TSP and PM<sub>10</sub> monitors on 12/28/12.

The Fourth Quarter 2012 Ambient Air Monitoring Report noted the following:

- The action levels for lead and dust were not exceeded.
- No sample was taken with the Big River #4 (Primary) PM<sub>10</sub> monitor on 10/09/12 due to mechanical failure of the elapsed time indicator. Upon discovery, the issue was corrected.
- No sample was taken with the Big River #4 (Primary) TSP monitor on 11/02/12 due to the filter being compromised by moisture during a storm event. Upon discovery, the issue was corrected.
- The sample for Big River #4 (QA) PM<sub>10</sub> monitor was invalid on 11/05/12 due to the elapsed run time exceeding tolerances. Upon identifying the issue, timer and sampling procedures were evaluated and the issue was corrected.
- No samples were taken with the TSP and PM<sub>10</sub> monitors on 11/21/12, 11/22/12, and 11/23/12 due
  to the holiday.
- A QA filter blank was completed on the Rivermines #3 (Water Treatment Plant) TSP and PM<sub>10</sub> monitors on 11/27/12.
- The sample for National #1 (Ozark Insulation) TSP monitor on 12/06/12 was qualified because
  the reweigh value was outside laboratory tolerances. The lead concentration was not affected by
  this issue.
- The sample for National #2 (Soccer Field) TSP monitor on 12/20/12 was invalid since the elapsed time for the sample exceeded tolerances. Upon identifying the issue, timer and sampling procedures were evaluated and the issue was corrected.
- The sample for National #3 (Water Plant) TSP monitor on 12/20/12 was invalid due to a mechanical failure. Upon discovering the mechanical failure, the issue was addressed.
- No samples were taken with the TSP monitors on 12/24/12 and 12/25/12 due to the holiday.
- No samples were taken with the PM<sub>10</sub> monitors on 12/26/12 due to the holiday.

Page 2

 A QA filter blank was completed on the Big River #4 (Primary) TSP and PM<sub>10</sub> monitors on 12/28/12.

- 3. Developments Anticipated and Work Scheduled for Next Period:
  - a. Complete work in the Mine Shaft Area.
  - b. Continue developing the Removal Action Report.
  - c. Complete monthly water sampling activities as described in the Removal Action Work Plan.
  - d. Complete air monitoring activities as described in the Removal Action Work Plan.
- 4. Changes in Personnel:
  - a. None.
- 5. Issues or Problems Arising This Period:
  - a. None.
- 6. Resolution of Issues or Problems Arising This Period:
  - a. None.

**End of Monthly Progress Report** 



March 26, 2013

Allison Olds Barr Engineering Company 1001 Diamond Ridge Suite 1100 Jefferson City, MO 65109

TEL: (573) 638-5007 FAX: (573) 638-5001

**RE:** National Tailings Pile - Design and Construction WorkOrder: 13030305

Dear Allison Olds:

TEKLAB, INC received 2 samples on 3/7/2013 9:40:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin Project Manager (618)344-1004 ex 16

MAustin@teklabinc.com



## **Report Contents**

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13030305

Client Project: National Tailings Pile - Design and Construction

Report Date: 26-Mar-13

## This reporting package includes the following:

| Cover Letter            | 1        |
|-------------------------|----------|
| Report Contents         | 2        |
| Definitions             | 3        |
| Case Narrative          | 4        |
| Laboratory Results      | 5        |
| Sample Summary          | 7        |
| Dates Report            | 8        |
| Quality Control Results | 9        |
| Receiving Check List    | 15       |
| Chain of Custody        | Appended |



### **Definitions**

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13030305

Client Project: National Tailings Pile - Design and Construction

Report Date: 26-Mar-13

#### Abbr Definition

CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.

- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
  - MB Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
  - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
  - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
  - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
  - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
  - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.

TNTC Too numerous to count ( > 200 CFU )

### **Oualifiers**

- # Unknown hydrocarbon
- E Value above quantitation range
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- ND Not Detected at the Reporting Limit
  - S Spike Recovery outside recovery limits



## **Case Narrative**

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13030305

Client Project: National Tailings Pile - Design and Construction

Report Date: 26-Mar-13

Kaosas City

Cooler Receipt Temp: 2.2 °C

**Collinsville** 

This report was revised on 03/26/2013 per Andrea Nord's request. The reason for the revision is remove the Soil Method Blank (R174806 MBLK 130311) from the QC section of the final report. Please replace report dated 03/15/2013 with this report. MLA 03/26/2013

### **Locations and Accreditations**

Springfield

| Address | 5445 Horseshoe Lake Road<br>Collinsville, IL 62234-7425 |      | ddress | 3920 Pintail Dr<br>Springfield, IL 6271 | 1-9415     | Address   | 8421 Nieman Road<br>Lenexa, KS 66214 |
|---------|---------------------------------------------------------|------|--------|-----------------------------------------|------------|-----------|--------------------------------------|
| Phone   | (618) 344-1004                                          |      | none   | (217) 698-1004                          |            | Phone     | (913) 541-1998                       |
| Fax     | (618) 344-1005                                          | Fa   | ıx     | (217) 698-1005                          |            | Fax       | (913) 541-1998                       |
| Email   | jhriley@teklabinc.com                                   | Er   | mail   | KKlostermann@tek                        | labinc.com | Email     | dthompson@teklabinc.com              |
| State   |                                                         | Dept |        | Cert#                                   | NELAP      | Exp Date  | Lab                                  |
| Illinoi | s                                                       | IÉPA |        | 100226                                  | NELAP      | 1/31/2014 | Collinsville                         |
| Kansa   | s                                                       | KDHE |        | E-10374                                 | NELAP      | 1/31/2014 | Collinsville                         |
| Louisi  | ana                                                     | LDEQ |        | 166493                                  | NELAP      | 6/30/2013 | Collinsville                         |
| Louisi  | ana                                                     | LDEQ |        | 166578                                  | NELAP      | 6/30/2013 | Springfield                          |
| Texas   |                                                         | TCEQ |        | T104704515-12-1                         | NELAP      | 7/31/2013 | Collinsville                         |
| Arkan   | sas                                                     | ADEQ |        | 88-0966                                 |            | 3/14/2014 | Collinsville                         |
| Illinoi | s                                                       | IDPH |        | 17584                                   |            | 4/30/2013 | Collinsville                         |
| Kentu   | cky                                                     | UST  |        | 0073                                    |            | 5/26/2013 | Collinsville                         |
| Misso   | uri                                                     | MDNR |        | 00930                                   |            | 4/13/2013 | Collinsville                         |
| Oklah   | ОПа                                                     | ODEQ |        | 9978                                    |            | 8/31/2013 | Collinsville                         |



## **Laboratory Results**

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13030305

Client Project: National Tailings Pile - Design and Construction

Report Date: 26-Mar-13

Lab ID: 13030305-001

Client Sample ID: Nat-East

Matrix: AQUEOUS Collection Date: 03/06/2013 12:00

| Matrix: AQUEOUS             |                        |            |         | Conceilon | Date. 007 | 00/2010 | 12.00            |         |
|-----------------------------|------------------------|------------|---------|-----------|-----------|---------|------------------|---------|
| Analyses                    | Certification          | RL         | Qual    | Result    | Units     | DF      | Date Analyzed    | Batch   |
| EPA 600 375.2 REV 2.0 199   | 3 (TOTAL)              |            |         |           |           |         |                  |         |
| Sulfate                     | NELAP                  | 200        |         | 297       | mg/L      | 20      | 03/14/2013 13:07 | R174806 |
| STANDARD METHOD 4500        | -H B, LABORATORY AI    | NALYZED    |         |           |           |         |                  |         |
| Lab pH                      | NELAP                  | 1.00       |         | 8.04      |           | 1       | 03/07/2013 11:30 | R174494 |
| STANDARD METHODS 234        | 40 C                   |            |         |           |           |         |                  |         |
| Hardness, as ( CaCO3 )      | NELAP                  | 5          |         | 530       | mg/L      | 1       | 03/07/2013 16:17 | R174563 |
| STANDARD METHODS 254        | 40 C (TOTAL)           |            |         |           |           |         |                  |         |
| Total Dissolved Solids      | NELAP                  | 20         |         | 612       | mg/L      | 1       | 03/11/2013 18:30 | R174691 |
| STANDARD METHODS 254        | 40 D                   |            |         |           |           |         |                  |         |
| Total Suspended Solids      | NELAP                  | 6          |         | < 6       | mg/L      | 1       | 03/07/2013 12:14 | R174527 |
| STANDARD METHODS 254        | 40 F                   |            |         |           |           |         |                  |         |
| Solids, Settleable          | NELAP                  | 0.2        |         | < 0.2     | ml/L      | 1       | 03/07/2013 11:20 | R174526 |
| STANDARD METHODS 531        | 10 C, ORGANIC CARBO    | N          |         |           |           |         |                  |         |
| Total Organic Carbon (TOC)  | NELAP                  | 1.0        |         | 1.0       | mg/L      | 1       | 03/08/2013 18:18 | R174603 |
| EPA 600 4.1.1, 200.7R4.4, I | METALS BY ICP (DISSO   | LVED)      |         |           |           |         |                  |         |
| Cadmium                     | NELAP                  | 2.00       |         | < 2.00    | μg/L      | 1       | 03/07/2013 17:07 | 86290   |
| Zinc                        | NELAP                  | 10.0       |         | 186       | μg/L      | 1       | 03/07/2013 17:07 | 86290   |
| EPA 600 4.1.4, 200.7R4.4, I | METALS BY ICP (TOTAL   | L)         |         |           |           |         |                  |         |
| Cadmium                     | NELAP                  | 2.00       |         | < 2.00    | μg/L      | 1       | 03/08/2013 19:08 | 86286   |
| Zinc                        | NELAP                  | 10.0       |         | 217       | μg/L      | 1       | 03/08/2013 19:08 | 86286   |
| STANDARD METHODS 30         | 30 E, 3113 B, METALS I | BY GFAA    |         |           |           |         |                  |         |
| Lead                        | NELAP                  | 2.00       | X       | 6.60      | μg/L      | 1       | 03/08/2013 11:36 | 86285   |
| STANDARD METHODS 303        | 30 B, 3113 B, METALS E | BY GFAA (C | ISSOLVE | D)        |           |         |                  |         |
| Lead                        | NELAP                  | 2.00       |         | 4.83      | μg/L      | 1       | 03/07/2013 14:11 | 86288   |



## **Laboratory Results**

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13030305

Client Project: National Tailings Pile - Design and Construction

Report Date: 26-Mar-13

Lab ID: 13030305-002

Client Sample ID: Nat-NW

Matrix: AQUEOUS Collection Date: 03/06/2013 12:25

| Analyses                     | Certification         | RL         | Qual    | Result | Units | DF | Date Analyzed    | Batch   |
|------------------------------|-----------------------|------------|---------|--------|-------|----|------------------|---------|
| EPA 600 375.2 REV 2.0 1993   | (TOTAL)               |            |         |        |       |    |                  |         |
| Sulfate                      | NELAP                 | 20         |         | 43     | mg/L  | 2  | 03/12/2013 17:59 | R174694 |
| STANDARD METHOD 4500-        | HB, LABORATORY A      | NALYZED    |         |        |       |    |                  |         |
| Lab pH                       | NELAP                 | 1.00       |         | 8.41   |       | 1  | 03/07/2013 11:32 | R174494 |
| STANDARD METHODS 2340        | C                     |            |         |        |       |    |                  |         |
| Hardness, as ( CaCO3 )       | NELAP                 | 5          |         | 200    | mg/L  | 1  | 03/07/2013 16:17 | R174563 |
| STANDARD METHODS 2540        | C (TOTAL)             |            |         |        |       |    |                  |         |
| Total Dissolved Solids       | NELAP                 | 20         |         | 166    | mg/L  | 1  | 03/11/2013 18:31 | R174691 |
| STANDARD METHODS 2540        | D                     |            |         |        |       |    |                  |         |
| Total Suspended Solids       | NELAP                 | 6          |         | < 6    | mg/L  | 1  | 03/07/2013 12:14 | R174527 |
| STANDARD METHODS 2540        | F                     |            |         |        |       |    |                  |         |
| Solids, Settleable           | NELAP                 | 0.2        |         | < 0.2  | ml/L  | 1  | 03/07/2013 11:20 | R174526 |
| STANDARD METHODS 5310        | C, ORGANIC CARBO      | N          |         |        |       |    |                  |         |
| Total Organic Carbon (TOC)   | NELAP                 | 1.0        |         | < 1.0  | mg/L  | 1  | 03/08/2013 18:43 | R174603 |
| EPA 600 4.1.1, 200.7R4.4, MI | ETALS BY ICP (DISSO   | LVED)      |         |        |       |    |                  |         |
| Cadmium                      | NELAP                 | 2.00       |         | < 2.00 | μg/L  | 1  | 03/07/2013 17:13 | 86290   |
| Zinc                         | NELAP                 | 10.0       |         | < 10.0 | μg/L  | 1  | 03/07/2013 17:13 | 86290   |
| EPA 600 4.1.4, 200.7R4.4, MI | ETALS BY ICP (TOTAL   | _)         |         |        |       |    |                  |         |
| Cadmium                      | NELAP                 | 2.00       |         | < 2.00 | μg/L  | 1  | 03/08/2013 19:14 | 86286   |
| Zinc                         | NELAP                 | 10.0       |         | < 10.0 | μg/L  | 1  | 03/08/2013 19:14 | 86286   |
| STANDARD METHODS 303         | 0 E, 3113 B, METALS I | BY GFAA    |         |        |       |    |                  |         |
| Lead                         | NELAP                 | 2.00       |         | 2.94   | μg/L  | 1  | 03/08/2013 11:47 | 86285   |
| STANDARD METHODS 3030        | B, 3113 B, METALS E   | BY GFAA (C | ISSOLVE | D)     |       |    |                  |         |
| Lead                         | NELAP                 | 2.00       |         | < 2.00 | μg/L  | 1  | 03/07/2013 14:22 | 86288   |



## **Sample Summary**

http://www.teklabinc.com/

Client: Barr Engineering Company

Client Project: National Tailings Pile - Design and Construction

Work Order: 13030305

| Lab Sample ID | Client Sample ID | Matrix  | Fractions | <b>Collection Date</b> |
|---------------|------------------|---------|-----------|------------------------|
| 13030305-001  | Nat-East         | Aqueous | 5         | 03/06/2013 12:00       |
| 13030305-002  | Nat-NW           | Aqueous | 5         | 03/06/2013 12:25       |



## **Dates Report**

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13030305

Client Project: National Tailings Pile - Design and Construction

| Sample ID     | Client Sample ID                                    | Collection Date  | Received Date                                                                                        |                  |                    |
|---------------|-----------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------|------------------|--------------------|
|               | Test Name                                           |                  |                                                                                                      | Prep Date/Time   | Analysis Date/Time |
| 13030305-001A | Nat-East                                            | 03/06/2013 12:00 | 03/07/2013 9:40                                                                                      |                  |                    |
|               | Standard Methods 2540 C (Total)                     |                  |                                                                                                      |                  | 03/11/2013 18:30   |
|               | Standard Methods 2540 D                             |                  |                                                                                                      |                  | 03/07/2013 12:14   |
|               | Standard Methods 2540 F                             |                  |                                                                                                      |                  | 03/07/2013 11:20   |
| 13030305-001B | Nat-East                                            | 03/06/2013 12:00 | 03/07/2013 9:40                                                                                      |                  |                    |
|               | EPA 600 375.2 Rev 2.0 1993 (Total)                  |                  |                                                                                                      |                  | 03/14/2013 13:07   |
|               | Standard Method 4500-H B, Laboratory Analyzed       |                  |                                                                                                      |                  | 03/07/2013 11:30   |
|               | Standard Methods 2340 C                             |                  |                                                                                                      |                  | 03/07/2013 16:17   |
| 3030305-001C  | Nat-East                                            | 03/06/2013 12:00 | 03/07/2013 9:40                                                                                      |                  |                    |
|               | EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)     |                  |                                                                                                      | 03/07/2013 11:30 | 03/08/2013 19:08   |
|               | Standard Methods 3030 E, 3113 B, Metals by GFAA     |                  |                                                                                                      | 03/07/2013 11:11 | 03/08/2013 11:36   |
| 3030305-001D  | Nat-East                                            | 03/06/2013 12:00 | 03/07/2013 9:40                                                                                      |                  |                    |
|               | EPA 600 4.1.1, 200.7R4.4, Metals by ICP (Dissolved) |                  |                                                                                                      | 03/07/2013 12:23 | 03/07/2013 17:07   |
|               | Standard Methods 3030 B, 3113 B, Metals by GFAA (   | Dissolved)       |                                                                                                      | 03/07/2013 11:48 | 03/07/2013 14:11   |
| 13030305-001E | Nat-East                                            | 03/06/2013 12:00 | 03/07/2013 9:40                                                                                      |                  |                    |
|               | Standard Methods 5310 C, Organic Carbon             |                  |                                                                                                      |                  | 03/08/2013 18:18   |
| 3030305-002A  | Nat-NW                                              | 03/06/2013 12:25 | 03/07/2013 9:40                                                                                      |                  |                    |
|               | Standard Methods 2540 C (Total)                     |                  |                                                                                                      |                  | 03/11/2013 18:31   |
|               | Standard Methods 2540 D                             |                  |                                                                                                      |                  | 03/07/2013 12:14   |
|               | Standard Methods 2540 F                             |                  |                                                                                                      |                  | 03/07/2013 11:20   |
| 3030305-002B  | Nat-NW                                              | 03/06/2013 12:25 | 03/07/2013 9:40                                                                                      |                  |                    |
|               | EPA 600 375.2 Rev 2.0 1993 (Total)                  |                  |                                                                                                      |                  | 03/12/2013 17:59   |
|               | Standard Method 4500-H B, Laboratory Analyzed       |                  |                                                                                                      |                  | 03/07/2013 11:32   |
|               | Standard Methods 2340 C                             |                  |                                                                                                      |                  | 03/07/2013 16:17   |
| 13030305-002C | Nat-NW                                              | 03/06/2013 12:25 | 03/07/2013 9:40                                                                                      |                  |                    |
|               | EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)     |                  |                                                                                                      | 03/07/2013 11:30 | 03/08/2013 19:14   |
|               | Standard Methods 3030 E, 3113 B, Metals by GFAA     |                  |                                                                                                      | 03/07/2013 11:11 | 03/08/2013 11:47   |
| 13030305-002D | Nat-NW,                                             | 03/06/2013 12:25 | 03/07/2013 9:40                                                                                      |                  |                    |
|               | EPA 600 4.1.1, 200.7R4.4, Metals by ICP (Dissolved) |                  | ann a mean faile a lead a mha a mha fhaile a bha ann a' deal bha | 03/07/2013 12:23 | 03/07/2013 17:13   |
|               | Standard Methods 3030 B, 3113 B, Metals by GFAA (   | Dissolved)       |                                                                                                      | 03/07/2013 11:48 | 03/07/2013 14:22   |
| 13030305-002E | Nat-NW                                              | 03/06/2013 12:25 | 03/07/2013 9:40                                                                                      |                  |                    |
|               | Standard Methods 5310 C, Organic Carbon             |                  |                                                                                                      |                  | 03/08/2013 18:43   |
|               |                                                     |                  |                                                                                                      |                  |                    |



http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13030305

Client Project: National Tailings Pile - Design and Construction

| Batch R174694                      | SampType:              | MBLK   |       | Units mg/L  |        |       |             |       |                        |            |            |
|------------------------------------|------------------------|--------|-------|-------------|--------|-------|-------------|-------|------------------------|------------|------------|
| SampID: MBLK                       |                        |        |       |             |        |       |             |       |                        |            | Date       |
| Analyses                           |                        |        | RL    | Qual        | Result | Spike | SPK Ref Val | %REC  | Low Limit              | High Limit | Analyzed   |
| Sulfate                            |                        |        | 10    |             | < 10   |       |             |       |                        |            | 03/12/2013 |
| Batch R174694<br>SampID: LCS SO4   | SampType:              | LCS    |       | Units mg/L  |        |       |             |       |                        |            | Date       |
| Analyses                           |                        |        | RL    | Qual        | Result | Spike | SPK Ref Val | %REC  | Low Limit              | High Limit | Analyzed   |
| Sulfate                            |                        |        | 10    |             | 29     | 27    | 0           | 107.6 | 90                     | 110        | 03/12/2013 |
| Batch R174806<br>SampID: MBLK      | SampType:              | MBLK   |       | Units mg/L  |        |       |             |       |                        |            | Date       |
| Analyses                           |                        |        | RL    | Qual        | Result | Spike | SPK Ref Val | %REC  | Low Limit              | High Limit | Analyzed   |
| Sulfate                            |                        |        | 10    |             | < 10   |       |             |       |                        |            | 03/14/2013 |
| Batch R174806<br>SampID: LCS       | SampType:              | LCS    |       | Units mg/L  |        |       |             |       |                        |            | Date       |
| Analyses                           |                        |        | RL    | Qual        | Result | Spike | SPK Ref Val | %REC  | Low Limit              | High Limit | Analyzed   |
| Sulfate                            |                        |        | 10    |             | 20     | 20    | 0           | 100.9 | 90                     | 110        | 03/14/2013 |
| Batch R174806<br>SampID: 13030305- | SampType:<br>001BMS    | MS     |       | Units mg/L  |        |       |             |       |                        |            | Date       |
| Analyses                           |                        |        | RL    | Qual        | Result | Spike | SPK Ref Val | %REC  | Low Limit              | High Limit | Analyzed   |
| Sulfate                            |                        |        | 200   |             | 482    | 200   | 296.6       | 92.9  | 90                     | 110        | 03/14/2013 |
| Batch R174806<br>SampID: 13030305- | SampType:<br>001BMSD   | MSD    |       | Units mg/L  |        |       |             | •     |                        | Limit 10   | Date       |
| Analyses                           |                        |        | RL    | Qual        |        | Spike |             |       |                        | Val %RPD   | Analyzed   |
| Sulfate                            |                        |        | 200   |             | 484    | 200   | 296.6       | 93.4  | 482.5                  | 0.21       | 03/14/2013 |
| STANDARD METH                      | IOD 4500-H             | B, LAB | ORATO | RY ANALYZEI | )      |       |             |       |                        |            |            |
| Batch R174494<br>SampID: LCS       | SampType:              | LCS    |       | Units       |        |       |             |       |                        |            | Date       |
| Analyses                           |                        |        | RL    | Qual        |        |       | SPK Ref Val |       | SECURIT SHEET SECURITY | High Limit | Analyzed   |
| Lab pH                             |                        |        | 1.00  |             | 7.01   | 7.00  | 0           | 100.1 | 99.1                   | 100.8      | 03/06/2013 |
| Batch R174494<br>SampID: 13030305- | SampType:<br>-001B DUP | DUP    |       | Units       |        |       |             |       | RPD                    | Limit 10   | Date       |
| Analyses                           |                        |        | RL    | Qual        | Result | Spike | SPK Ref Val | %REC  | RPD Ref                | Val %RPD   | Analyzed   |
| Lab pH                             |                        |        | 1.00  | -           | 8.04   |       |             |       | 8.040                  | 0.00       | 03/07/2013 |



http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13030305

Client Project: National Tailings Pile - Design and Construction

| Batch R174494 SampType:                                                            | DUP   |      | Units      |        |              |             |       | RPD       | Limit 10   | Colonial Colon   |
|------------------------------------------------------------------------------------|-------|------|------------|--------|--------------|-------------|-------|-----------|------------|------------------|
| SampID: 13030305-002B DUP                                                          |       |      |            |        |              |             |       |           |            | Date             |
| Analyses                                                                           |       | RL   | Qual       | Result | Spike        | SPK Ref Val | %REC  | RPD Ref \ | /al %RPD   | Analyzed         |
| Lab pH                                                                             |       | 1.00 |            | 8.43   |              |             |       | 8.410     | 0.24       | 03/07/2013       |
| STANDARD METHODS 2340 C                                                            | ;     |      |            |        |              |             |       |           |            |                  |
| Batch R174563 SampType:<br>SampID: MB-R174563                                      | MBLK  |      | Units mg/L |        |              |             |       |           |            | Date             |
| Analyses                                                                           |       | RL   | Qual       |        | Spike        | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed         |
| Hardness, as ( CaCO3 )                                                             |       | 5    |            | < 5    |              |             |       |           |            | 03/07/2013       |
| Batch R174563 SampType:<br>SampID: LCS-R174563                                     | LCS   |      | Units mg/L |        |              |             |       |           |            | Date             |
| Analyses                                                                           |       | RL   | Qual       | Result | Spike        | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed         |
| Hardness, as ( CaCO3 )                                                             |       | 5    |            | 1020   | 1000         | 0           | 102.0 | 90        | 110        | 03/07/2013       |
| Batch R174563 SampType:<br>SampID: 13030305-001BMS                                 | MS    |      | Units mg/L | n k    | G-11         | SPK Ref Val | %PEC  | Low Limit | High Limit | Date<br>Analyzed |
| Analyses Hardness, as ( CaCO3 )                                                    | 100   | RL 5 | Qual       | 750    | Spike<br>200 | 530.0       | 110.0 | 85        | 115        | 03/07/2013       |
| nardriess, as ( CaCO3 )                                                            |       | 3    |            | 730    | 200          | 550.0       | 110.0 | 65        | 113        | 03/01/2013       |
| Batch         R174563         SampType:           SampID:         13030305-001BMSD | MSD   |      | Units mg/L |        |              |             |       | RPD       | Limit 10   | Date             |
| Analyses                                                                           |       | RL   | Qual       | Result | Spike        | SPK Ref Val | %REC  | RPD Ref \ | /al %RPD   | Analyzed         |
| Hardness, as ( CaCO3 )                                                             |       | 5    |            | 720    | 200          | 530.0       | 95.0  | 750.0     | 4.08       | 03/07/2013       |
| STANDARD METHODS 2540 C                                                            | ATOT) | L)   |            |        |              |             |       |           |            |                  |
| Batch R174691 SampType:<br>SampID: MBLK                                            | MBLK  |      | Units mg/L |        |              |             |       |           |            | Date             |
| Analyses                                                                           |       | RL   | Qual       | Result | Spike        | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed         |
| Total Dissolved Solids                                                             |       | 20   |            | < 20   |              |             |       |           |            | 03/12/2013       |
| Total Dissolved Solids                                                             |       | 20   |            | < 20   |              |             |       |           |            | 03/11/2013       |
| Total Dissolved Solids                                                             |       | 20   |            | < 20   |              |             |       |           |            | 03/12/2013       |
| Total Dissolved Solids                                                             |       | 20   |            | < 20   |              |             |       |           |            | 03/11/2013       |
| Total Dissolved Solids                                                             |       | 20   |            | < 20   |              |             |       |           |            | 03/11/2013       |
| Batch R174691 SampType:<br>SampID: LCS                                             | LCS   |      | Units mg/L |        |              |             |       |           |            | Date             |
| Analyses                                                                           |       | RL   | Qual       | Result | Spike        | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed         |
| Total Dissolved Solids                                                             |       | 20   |            | 1010   |              | 0           | 101.4 | 90        | 110        | 03/11/2013       |



http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13030305

Client Project: National Tailings Pile - Design and Construction

| D. 4.1 D17/601                    | HODS 2540 C           |       |         | Units mg/L  |        |       |             |       |           |               |                  |
|-----------------------------------|-----------------------|-------|---------|-------------|--------|-------|-------------|-------|-----------|---------------|------------------|
| Batch R174691<br>SampID: LCSQC    | SampType:             | LUSQU |         | Offits Mg/L |        |       |             |       |           |               | Date             |
| Analyses                          |                       |       | RL      | Qual        | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit    | Analyzed         |
| Total Dissolved S                 | olids                 |       | 20      |             | 1010   | 1000  | 0           | 101.4 | 90        | 110           | 03/11/2013       |
| Total Dissolved S                 | olids                 |       | 20      |             | 1020   | 1000  | 0           | 101.6 | 90        | 110           | 03/11/2013       |
| Total Dissolved S                 |                       |       | 20      |             | 1000   | 1000  | 0           | 100.4 | 90        | 110           | 03/12/2013       |
| Total Dissolved S                 | olids                 |       | 20      |             | 1060   | 1000  | 0           | 105.8 | 90        | 110           | 03/12/2013       |
| Batch R174691<br>SampID: 13030305 | SampType:<br>6-001AMS | MS    |         | Units mg/L  |        |       |             |       |           |               | Date             |
| Analyses                          |                       |       | RL      | Qual        | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit    | Analyzed         |
| Total Dissolved S                 | olids                 |       | 20      |             | 1150   | 500   | 612.0       | 106.8 | 85        | 115           | 03/11/2013       |
| Batch R174691                     | SampType:             | MSD   |         | Units mg/L  |        |       |             |       | RPD       | Limit 15      |                  |
| SampID: 13030305                  | -001AMSD              |       |         |             |        |       |             |       |           |               | Date<br>Analyzed |
| Analyses                          |                       |       | RL      | Qual        |        | Spike |             |       |           | /al %RPD      |                  |
| Total Dissolved S                 | olids                 |       | 20      |             | 1150   | 500   | 612.0       | 107.6 | 1146      | 0.35          | 03/11/2013       |
| STANDARD MET                      | HODS 2540 D           | )     |         |             |        |       |             |       |           |               |                  |
| Batch R174527<br>SampID: MBLK     | SampType:             | MBLK  |         | Units mg/L  |        |       |             |       |           |               | Date             |
| Analyses                          |                       |       | RL      | Qual        | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit    | Analyzed         |
| Total Suspended                   | Solids                |       | 6       |             | < 6    |       |             |       |           |               | 03/07/2013       |
| Batch R174527<br>SampID: LCS      | SampType:             | LCS   |         | Units mg/L  |        |       |             |       |           |               | Date             |
| Analyses                          |                       |       | RL      | Oual        | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit    | Analyzed         |
| Total Suspended                   | Solids                |       | 6       |             | 99     | 100   | 0           | 99.0  | 85        | 115           | 03/07/2013       |
| Total Suspended                   | Solids                |       | 6       |             | 101    | 100   | 0           | 101.0 | 85        | 115           | 03/07/2013       |
| Total Suspended                   | Solids                |       | 6       |             | 103    | 100   | 0           | 103.0 | 85        | 115           | 03/07/2013       |
| Total Suspended                   | Solids                |       | 6       |             | 95     | 100   | 0           | 95.0  | 85        | 115           | 03/07/2013       |
| Total Suspended                   | Solids                |       | 6       |             | 101    | 100   | 0           | 101.0 | 85        | 115           | 03/07/2013       |
| Batch R174527                     | SampType:             | DUP   |         | Units mg/L  |        |       |             |       | RPD       | Limit 15      |                  |
| SampID: 13030305                  | 5-001A DUP            |       |         |             |        |       |             |       |           |               | Date<br>Analyzed |
| Analyses Total Suspended          | Solids                |       | RL 6    | Qual        | Result | Spike | SPK Ref Val | %REC  | RPD Ref   | Val %RPD 0.00 | 03/07/2013       |
|                                   |                       |       |         |             |        |       |             |       |           |               |                  |
| STANDARD MET                      |                       |       | ANIC CA |             |        |       |             |       |           |               |                  |
| Batch R174603<br>SampID: ICB/MBLI | SampType:             | MRLK  |         | Units mg/L  |        |       |             |       |           |               | Date             |
| Analyses                          |                       |       | RL      | Qual        | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit    | Analyzed         |
| Total Organic Ca                  | rbon (TOC)            |       | 1.0     |             | < 1.0  |       |             |       |           |               | 03/08/2013       |



http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13030305

Client Project: National Tailings Pile - Design and Construction

| Batch R174603                      | SampType:            | LCS   |          | Units mg/L   |        |       |             |       |           |            |            |
|------------------------------------|----------------------|-------|----------|--------------|--------|-------|-------------|-------|-----------|------------|------------|
| SampiD: ICV/LCS                    | Camp Type.           | LOG   |          | Office Hig/L |        |       |             |       |           |            | Date       |
| Analyses                           |                      |       | RL       | Qual         | Result | Snike | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed   |
| Total Organic Carb                 | oon (TOC)            |       | 10.0     | Quan         | 61.4   | 59.7  | 0           | 102.9 | 90        | 110        | 03/08/2013 |
| Batch R174603<br>SampID: 13030305- | SampType:<br>001EMS  | MS    |          | Units mg/L   |        |       |             |       |           |            | Date       |
| Analyses                           |                      |       | RL       | Qual         | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed   |
| Total Organic Carb                 | oon (TOC)            |       | 1.0      |              | 5.5    | 5.0   | 1.040       | 89.8  | 85        | 115        | 03/08/2013 |
| Batch R174603<br>SampID: 13030305- | SampType:<br>001EMSD | MSD   |          | Units mg/L   |        |       |             |       | RPD       | Limit 10   | Date       |
| Analyses                           |                      |       | RL       | Qual         | Result | Spike | SPK Ref Val | %REC  | RPD Ref \ | /al %RPD   | Analyzed   |
| Total Organic Carb                 | oon (TOC)            |       | 1.0      |              | 5.4    | 5.0   | 1.040       | 87.6  | 5.530     | 2.01       | 03/08/2013 |
| EPA 600 4.1.1, 200                 | .7R4.4, MET          | ALS B | Y ICP (E | DISSOLVED)   |        |       |             |       |           |            |            |
| Batch 86290<br>SampID: MB-86290    | SampType:            | MBLK  |          | Units µg/L   |        |       |             |       |           |            | Date       |
| Analyses                           |                      |       | RL       | Qual         | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed   |
| Cadmium                            |                      |       | 2.00     |              | < 2.00 | 2.00  | 0           | 0     | -100      | 100        | 03/07/2013 |
| Zinc                               |                      |       | 10.0     |              | < 10.0 | 10.0  | 0           | 0     | -100      | 100        | 03/07/2013 |
| Batch 86290<br>SampID: LCS-86290   | SampType:            | LCS   |          | Units µg/L   |        |       |             |       |           |            | Date       |
| Analyses                           |                      |       | RL       | Qual         | Result | Spike | SPK Ref Val |       | Low Limit |            | Analyzed   |
| Cadmium                            |                      |       | 2.00     |              | 46.5   | 50.0  | 0           | 93.0  | 85        | 115        | 03/07/2013 |
| Zinc                               |                      |       | 10.0     |              | 458    | 500   | 0           | 91.7  | 85        | 115        | 03/07/2013 |
| Batch 86290<br>SampID: 13030305-   | SampType:<br>002DMS  | MS    |          | Units µg/L   |        |       |             |       |           |            | Date       |
| Analyses                           |                      |       | RL       | Qual         | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed   |
| Cadmium                            |                      |       | 2.00     |              | 45.8   | 50.0  | 0           | 91.6  | 75        | 125        | 03/07/2013 |
| Zinc                               |                      |       | 10.0     |              | 456    | 500   | 3.4         | 90.6  | 75        | 125        | 03/07/2013 |
| Batch 86290                        | SampType:            | MSD   |          | Units µg/L   |        |       |             |       | RPD       | Limit 20   |            |
| SampID: 13030305-                  | 002DMSD              |       |          |              |        |       |             |       |           |            | Date       |
| Analyses                           |                      |       | RL       | Qual         |        |       | SPK Ref Val |       |           | /al %RPD   | Analyzed   |
| Cadmium                            |                      |       | 2.00     |              | 45.4   | 50.0  | 0           | 90.8  | 45.8      | 0.88       | 03/07/2013 |
| Zinc                               |                      |       | 10.0     |              | 454    | 500   | 3.4         | 90.1  | 456.5     | 0.62       | 03/07/2013 |



http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13030305

Client Project: National Tailings Pile - Design and Construction

| Batch 86286                            | SampType:           | MBLK    |        | Units µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |       |             |       |           |            |            |
|----------------------------------------|---------------------|---------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------------|-------|-----------|------------|------------|
| SampID: MB-86286                       |                     |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |             |       |           |            | Date       |
| Analyses                               |                     |         | RL     | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed   |
| Cadmium                                |                     |         | 2.00   | 00.000.000.000.000.000.000.000.000.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 2.00 | 2.00  | 0           | 0     | -100      | 100        | 03/08/2013 |
| Zinc                                   |                     |         | 10.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 10.0 | 10.0  | 0           | 0     | -100      | 100        | 03/08/2013 |
| Zinc                                   |                     |         | 10.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 10.0 | 10.0  | 0           | 0     | -100      | 100        | 03/12/2013 |
| Batch 86286<br>SampID: LCS-86286       | SampType:           | LCS     |        | Units µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |       |             |       |           |            | Date       |
| Analyses                               |                     |         | RL     | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed   |
| Cadmium                                |                     |         | 2.00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.1   | 50.0  | 0           | 102.2 | 85        | 115        | 03/08/2013 |
| Zinc                                   |                     |         | 10.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 510    | 500   | 0           | 101.9 | 85        | 115        | 03/08/2013 |
| Zinc                                   |                     |         | 10.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 489    | 500   | 0           | 97.8  | 85        | 115        | 03/12/2013 |
| Batch 86286<br>SampID: 13030305-       | SampType:<br>002CMS | MS      |        | Units µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |       |             |       |           |            | Date       |
| Analyses                               |                     |         | RL     | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed   |
| Cadmium                                |                     |         | 2.00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49.6   | 50.0  | 0           | 99.2  | 75        | 125        | 03/08/2013 |
| Zinc                                   |                     |         | 10.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500    | 500   | 2.1         | 99.6  | 75        | 125        | 03/08/2013 |
| Batch 86286                            | SampType:           | MSD     |        | Units µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |       |             |       | RPD       | Limit 20   |            |
| SampID: 13030305-                      | 002CMSD             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |             |       |           |            | Date       |
| Analyses                               |                     |         | RL     | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result |       | SPK Ref Val | %REC  | RPD Ref \ | /al %RPD   | Analyzed   |
| Cadmium                                |                     |         | 2.00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49.7   | 50.0  | 0           | 99.4  | 49.6      | 0.20       | 03/08/2013 |
| Zinc                                   |                     |         | 10.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 504    | 500   | 2.1         | 100.3 | 500       | 0.74       | 03/08/2013 |
| STANDARD METH                          | ODS 3030 I          | E, 3113 | B, MET | ALS BY GFAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \      |       |             |       |           |            |            |
| <b>Batch</b> 86285<br>SampID: MB-86285 | SampType:           | MBLK    |        | Units µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |       |             |       |           |            | Date       |
| Analyses                               |                     |         | RL     | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed   |
| Lead                                   |                     |         | 2.00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 2.00 | 2.00  | 0           | 0     | -100      | 100        | 03/08/2013 |
| Batch 86285<br>SampID: LCS-86285       | SampType:           | LCS     |        | Units µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |       |             |       |           |            | Date       |
| Analyses                               |                     |         | RL     | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed   |
| Lead                                   |                     |         | 2.00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 15.0  | 0           | 103.9 | 85        | 115        | 03/08/2013 |
| Batch 86285<br>SampID: 13030305-       | SampType:<br>001CMS | MS      |        | Units µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |       |             |       |           |            | Date       |
| Analyses                               |                     |         | RL     | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result | Spike | SPK Ref Val | %REC  | Low Limit | High Limit | Analyzed   |
|                                        |                     |         | 2.00   | Marie Control of the |        | 15.0  | 6.6023      | 92.5  | 70        | 130        | 03/08/2013 |



http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13030305

Client Project: National Tailings Pile - Design and Construction

| Batch 86285                      | SampType:           | MSD    |         | Units µg/L  |                |               |                       |        | RPD       | Limit 20      |                  |
|----------------------------------|---------------------|--------|---------|-------------|----------------|---------------|-----------------------|--------|-----------|---------------|------------------|
| SampID: 13030305-                | 001CMSD             |        |         |             |                |               |                       |        |           |               | Date             |
| Analyses                         |                     |        | RL      | Qual        | Result         | Spike         | SPK Ref Val           | %REC   | RPD Ref \ | Val %RPD      | Analyzed         |
| Lead                             |                     |        | 2.00    |             | 20.1           | 15.0          | 6.6023                | 89.8   | 20.4837   | 2.04          | 03/08/2013       |
| STANDARD METH                    | ODS 3030 B          | , 3113 | B, META | ALS BY GFAA | (DISSOL        | VED)          |                       |        |           |               |                  |
| Batch 86288<br>SampID: MB-86288  | SampType:           | MBLK   |         | Units µg/L  |                |               |                       |        |           |               | Date             |
| Analyses                         |                     |        | RL      | Oual        | Result         | Spike         | SPK Ref Val           | %REC   | Low Limit | High Limit    | Analyzed         |
| Lead                             |                     |        | 2.00    |             | < 2.00         | 2.00          | 0                     | 0      | -100      | 100           | 03/07/2013       |
| Batch 86288<br>SampID: LCS-86288 | SampType:           | LCS    |         | Units µg/L  |                |               |                       |        |           |               | Date             |
| Analyses                         |                     |        | RL      | Qual        | Result         | Spike         | SPK Ref Val           | %REC   | Low Limit | High Limit    | Analyzed         |
| Lead                             |                     |        | 2.00    |             | 15.3           | 15.0          | 0                     | 101.9  | 85        | 115           | 03/07/2013       |
| Batch 86288<br>SampID: 13030305- | SampType:<br>001DMS | MS     |         | Units µg/L  |                |               |                       |        |           |               | Date             |
| Analyses                         |                     |        | RL      | Qual        | Result         | Spike         | SPK Ref Val           | %REC   | Low Limit | High Limit    | Analyzed         |
| Lead                             |                     |        | 2.00    |             | 18.0           | 15.0          | 4.8339                | 87.6   | 70        | 130           | 03/07/2013       |
| Batch 86288                      | SampType:           | MSD    |         | Units µg/L  |                |               |                       |        | RPD       | Limit 20      |                  |
| SampID: 13030305-                | מפואומדיטט          |        |         |             |                | ~ "           | CDV Def Vel           | 0/ DEC | DDD Det   | /al           | Date<br>Analyzed |
| Analyses<br>Lead                 |                     |        | 2.00    | Qual        | Result<br>18.3 | Spike<br>15.0 | SPK Ref Val<br>4.8339 | 90.0   | 17.9697   | Val %RPD 2.03 | 03/07/2013       |



# **Receiving Check List**

http://www.teklabinc.com/

| ient Project: National Tailings Pile - Design and Cor                                                                    | Report Date: 26-Mar-13 |                                                     |                               |              |             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------|-------------------------------|--------------|-------------|--|--|--|
| Carrier: Tim Mathis  Completed by: On: 07-Mar-13  Emily E. Pohlman                                                       |                        | teceived By: SR<br>Reviewed by:<br>On:<br>07-Mar-13 | H<br>MUH<br>Michael L. Austin |              |             |  |  |  |
| Pages to follow: Chain of custody 1                                                                                      | Extra pages incli      | uded 0                                              |                               |              | ·           |  |  |  |
| Shipping container/cooler in good condition?                                                                             | Yes 🗹                  | No 🗆                                                | Not Present                   |              | Temp °C 2.2 |  |  |  |
| Type of thermal preservation?                                                                                            | None                   | łce 🗹                                               | Blue Ice                      |              | Dry loe     |  |  |  |
| Chain of custody present?                                                                                                | Yes 🗹                  | No 🗌                                                |                               |              | •           |  |  |  |
| Chain of custody signed when relinquished and received?                                                                  | Yes 🗹                  | No 🗌                                                |                               |              |             |  |  |  |
| Chain of custody agrees with sample labels?                                                                              | Yes 🗹                  | No 🗌                                                |                               |              |             |  |  |  |
| Samples in proper container/bottle?                                                                                      | Yes 🗹                  | No 🗌                                                |                               |              |             |  |  |  |
| Sample containers intact?                                                                                                | Yes 🗹                  | No 🗌                                                |                               |              | •           |  |  |  |
| Sufficient sample volume for indicated test?                                                                             | Yes 🗹                  | No 🗌                                                |                               |              | •           |  |  |  |
| All samples received within holding time?                                                                                | Yes 🗹                  | No 🗌                                                |                               |              |             |  |  |  |
| Reported field parameters measured:                                                                                      | Field 🗌                | Lab 🗹                                               | NA                            |              |             |  |  |  |
| Container/Temp Blank temperature in compliance?                                                                          | Yes 🗹                  | No 🗌                                                |                               |              |             |  |  |  |
| When thermal preservation is required, samples are compliand 0.1°C - 6.0°C, or when samples are received on ice the same |                        |                                                     |                               |              |             |  |  |  |
| Nater – at least one vial per sample has zero headspace?                                                                 | Yes 🗆                  | No 🗆                                                | ☐ No VOA vials                | V            |             |  |  |  |
| Nater - TOX containers have zero headspace?                                                                              | Yes 🗌                  | No 🗆                                                | No TOX containers             | <b>✓</b>     | •           |  |  |  |
| Water - pH acceptable upon receipt?                                                                                      | Yes 🗸                  | No 🗆                                                |                               |              |             |  |  |  |
| NPDES/CWA TCN interferences checked/treated in the field?                                                                | Yes                    | No 🗆                                                | NA                            | $\checkmark$ |             |  |  |  |
| Any No responses i                                                                                                       | must be detailed I     | pelow or on the                                     | COC.                          |              |             |  |  |  |

| BA | RR |
|----|----|
|    |    |

## Chain of Custody

| Chain of Custody  1001 Diamond Ridge, Suite 1100                                                                       |             |                |               |                                     |                               | L                             | Parameters |               |              |         |            |                           |          |         |            |             |           | COC 1 of 1 |            |          |         |                  |                                                  |             |          |                                       |                 |
|------------------------------------------------------------------------------------------------------------------------|-------------|----------------|---------------|-------------------------------------|-------------------------------|-------------------------------|------------|---------------|--------------|---------|------------|---------------------------|----------|---------|------------|-------------|-----------|------------|------------|----------|---------|------------------|--------------------------------------------------|-------------|----------|---------------------------------------|-----------------|
| BARR J                                                                                                                 | lesserson ( | City, MO       |               | 1100                                |                               |                               |            |               |              |         |            | L                         | т—       |         | V.         | Vate        | r         |            |            | <u> </u> | 1 1     | Soil             | <del>,                                    </del> |             | 4        | Project                               |                 |
| (573) 638-5000                                                                                                         |             |                |               |                                     |                               |                               |            |               | 1            |         |            |                           |          |         |            |             |           |            |            |          |         |                  | Manager: Ty                                      | Morris      |          |                                       |                 |
| Project Number: 25860003.06 TLM2 030                                                                                   |             |                |               |                                     |                               |                               |            |               |              |         |            |                           |          |         |            |             |           |            |            |          |         | 8                |                                                  |             |          |                                       |                 |
| Project Name: National Tailings Pile - Design and Construction                                                         |             |                |               |                                     |                               |                               |            |               |              |         |            |                           |          |         |            |             |           |            |            |          | 1       | Containers       | Project<br>QC Contact: A                         | andrea Nord |          |                                       |                 |
| Sample Origination State: MO (use two letter postal state abbreviation)                                                |             |                |               |                                     |                               |                               |            |               |              | 1       | Solids     |                           |          | E       |            |             | Solids    |            |            |          |         |                  | Cont                                             | _           |          |                                       |                 |
| COC Number: NAT 030613                                                                                                 |             |                |               |                                     |                               |                               |            | 7             | Suspended So |         | Solids     | Carbo                     | <u>s</u> |         |            |             |           |            |            |          | Jo      | Sampled<br>By: S | Stephen Moilanen                                 |             |          |                                       |                 |
|                                                                                                                        |             |                |               |                                     |                               |                               | 1          | Matrix        |              | Ту      | pe         |                           |          | 100     | ole Sol    | Organic     | ed Metals | SS         | Dissolved  |          |         |                  |                                                  |             | Number   | _                                     | cklab           |
| Location                                                                                                               |             | Start<br>Depth | Stop<br>Depth | Depth<br>Unit<br>(m./ft.<br>or in.) | Collection Date (mm/dd/yyyy)  | Collection<br>Time<br>(hh:mm) | Water      | Soil          | Grab         | 1       | 8          | ,<br> <br>표               | ਕ        | Sulfate | Settleable | Total Organ | Dissolved |            | Total D    |          |         |                  |                                                  |             | Total 1  |                                       |                 |
| 1. Nat-East                                                                                                            |             | BO3C           | 305           | 201                                 | 03/06/13                      | 13:00                         | х          |               | х            |         |            | ,                         | χ        | х       | х          | <b>x</b> :  | хх        | х          | x          |          |         |                  |                                                  |             | 5        | Preservatives: 2<br>Unpreserved       | HNO3, 1 H2SO4,  |
| 2 Nat- NW                                                                                                              |             |                |               | စာသ                                 | 3/6/13                        | 12:25                         | X          |               | X            |         |            | χ                         | K        | X       | ΧŢ.        | X X         | X         | ٨          | X          |          |         |                  |                                                  |             | 5        | j:                                    | <u> </u>        |
| 3                                                                                                                      |             |                |               |                                     |                               |                               |            |               |              |         |            | $\downarrow$              |          |         | 1          |             |           |            |            |          |         |                  | Ш                                                |             |          | · · · · · · · · · · · · · · · · · · · |                 |
| 4.                                                                                                                     |             |                |               |                                     | -                             |                               |            |               |              |         |            | $\perp$                   | _        |         |            | _           | _         |            |            |          |         |                  |                                                  |             | <u> </u> |                                       |                 |
| 5.                                                                                                                     |             |                |               |                                     |                               |                               |            |               |              | 1       | _          | $\downarrow$              | _        |         |            |             |           |            | _          |          | $\perp$ |                  |                                                  | $\perp$     |          | <u> </u>                              | <del></del>     |
| 6.                                                                                                                     |             |                |               |                                     |                               |                               |            |               | 4.           |         |            | 1                         | ļ        |         | _          |             |           |            |            |          |         |                  | $\coprod$                                        | _           |          |                                       |                 |
| 7                                                                                                                      |             |                |               |                                     |                               |                               |            |               | $\perp$      | $\perp$ |            | 1                         | <u> </u> |         |            |             |           |            | ļ.         |          |         | _                |                                                  |             | ļ        |                                       |                 |
| 8.                                                                                                                     |             |                |               |                                     |                               |                               |            |               |              |         |            |                           |          |         |            |             |           |            |            |          |         |                  |                                                  |             |          | <u> </u>                              |                 |
| Comments: Invoice<br>at Doe Run.<br>Matrix is surface w<br>Metals include Cad                                          | ater.       |                |               | un. Resu                            | its to be sent to             | Allison Olds                  | s (aol     | ds@ba         | irr.com      | ) at I  | Barr E     | ngin                      | eerin    | g, A    | ndre       | a N         | ord (     | anor       | d@ba       | rr.con   | n) at E | Загт E           | ngin                                             | eering      | , and N  | Mark Nations (mna                     | ions@doerun.con |
| Common Paramete                                                                                                        | er/Contai   | ner – Pr       | eservatio     | n Key                               | Relinquished<br>Stephen Moils |                               | M          | 1             | ,            | On '    | lce?<br>□N | ľ                         | 3- E     | -13     | 3          | Ţ<br>Į.     | ر.<br>او: | 0          | Rese       | ivedt    |         | 4                |                                                  |             |          | Datg. 7-13                            | Time:           |
| #1 - Volatile Organics = BTEX, GRO, TPH, 8260 Full List #2 - Semivolatile Organics = PAHs, PCP, Dioxins, 8270  On Ice? |             |                |               |                                     |                               |                               | _          | Date 713 Time |              |         | 2          | Received to leptane Hayne |          |         |            |             | Ha        | Date 7 13  | Timey : CO |          |         |                  |                                                  |             |          |                                       |                 |
| 43 C                                                                                                                   |             |                | 411 11 11     | 700                                 | Samples Shi                   | pped VIA: 💆                   | _IAir :    | Freight       | ∐Fed         | eral E  | xpress     | LIS                       | ampl     | er      |            |             |           | ĺ          | Air i      | Bill N   | mbe     | r:               |                                                  |             | •        | 1 1                                   |                 |

#3 - General = pH, Chloride, Fluoride, Alkalinity, TSS, TDS, TS, Sulfate

#4 - Nutrients = COD, TOC, Phenols, Ammonia Nitrogen, TKN

| Stephen Moilgnen Date:                                   | Thine: | Reseived by               | Datg. 7-13 | Time:     |
|----------------------------------------------------------|--------|---------------------------|------------|-----------|
| Relinquish 64: On Ice? Date 7.13                         | Time   | Received by Lephane Jayne | Date 7 13  | Timey (LO |
| Samples Shipped VIA: Air Freight Federal Express Sampler |        | Air Bill Number!          | 1.1        | ,         |

Distribution: White - Original Accompanies Shipment to Lab; Yellow - Field Copy; Pink - Lab Coordinator

2.200 Jamp Coules2 #2 PRESERVED in field TMB

120202